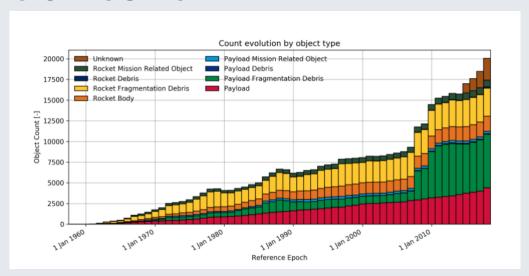


Strategy for GEO survey and results from NEEMO-T03 telescope in Romania


Madalina Trelia^{(1),(4)}, Adrian Sonka^{(2),(7)}, Mirel Birlan^{(2),(3)}, Dan Alin Nedelcu^{(2),(3)}, Violeta Poenaru⁽⁴⁾, Mugurel Balan⁽⁵⁾, Maria Alexandra Nita⁽⁶⁾

- (1) Romanian Space Agency, Str. Mendeleev 21-25, 010362 Bucharest, Romania,
 - madalina.trelia@rosa.ro
- (2) Astronomical Institute of the Romanian Academy, Str. Cutitul de Argint 5, 040557
 - Bucharest, Romania
 - (3) IMCCE, Observatoire de Paris, 77 av Denfert Rochereau, 75014 Paris cedex, France
 - (4) University of Bucharest, Faculty of Physics, Doctoral School of Physics, Str.
 - Atomistilor 405, Magurele, Ilfov, Romania
- (5) Institute of Space Science, Str. Atomistilor 409, 077125 Magurele, Ilfov, Romania
- ⁽⁶⁾ GMV, Romania, 246C Calea Floreasca, SkyTower 32nd Floor, 014476 Bucharest,

Romania

(7) Amiral Vasile Urseanu Astronomical Observatory, Bb. Lascar Catargiu, no 21, Bucharest, Romania

Context

Source: ESA'S ANNUAL SPACE ENVIRONMENT REPORT (2021)

Space	Score	board
-------	-------	-------

OBJECT TYPE APPROX OBJECTS

Active Payloads 5600

Analyst Objects 18800

Debris 20100

Total 44500

Source: www.space-track.org

*Currently (as of March 2022)

High number of artificial space objects \rightarrow constant monitoring \rightarrow SST activities

- Since 2018 Romania is a member in EU SST* Consortium
- National Centre for Space Surveillance and Tracking (COSST)
 - developing and improving the national sensor network
 - planning and coordination of sensors
 - processing and analysing the astronomical data

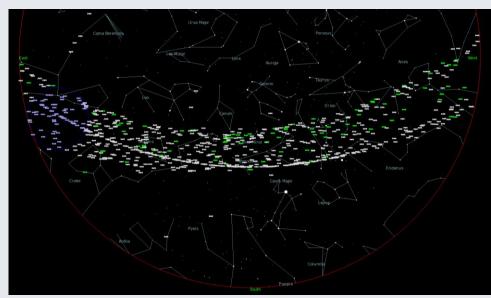
^{*}European Union Space Surveillance and Tracking (<u>www.eusst.eu</u>)

Equipment

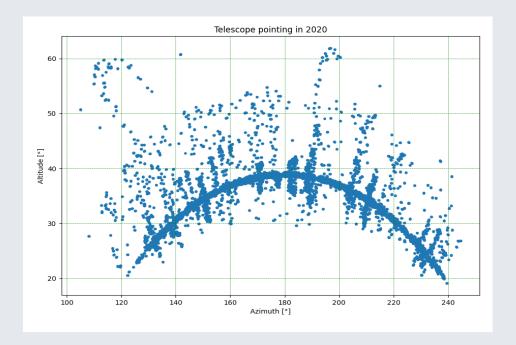
- Mobile platform (IAU code 073) Birlan, M., et all (2019); Trelia, M., et all (2020)
- Alt-az direct drive L-600 Planewave mount capable of tracking objects from LEO to HEO
- Two telescopes supported by the same mount:
 - NEEMO-T05 0.5 m f/7 Riccardi Dall-Kirkhamn
 - NEEMO-T03 0.35 m f/2.8 Riccardi-Honders astrograph
- FLI Kepler4040 sCMOS camera with
 - 4096 X 4096 pixels array
 - FOV of 2.1°X 2.1°
 - resolution of 1.85"/px (T03)

Observation strategy

Several runs each night

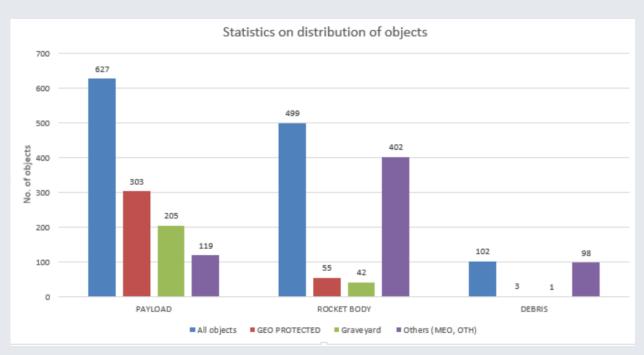

trade-off no. of objects vs. no. of individual images acquired

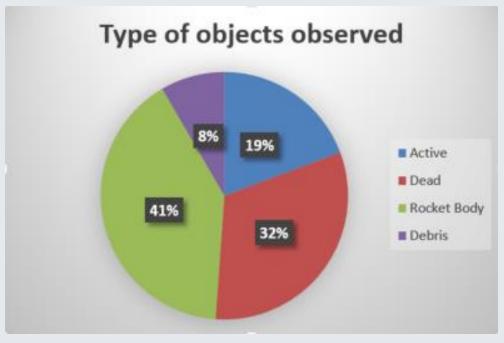
GEO objects (DEC=-6,5 deg within the limits of the FOV)


Eastern horizon 3 consecutive images/field 2.5 seconds exposure time

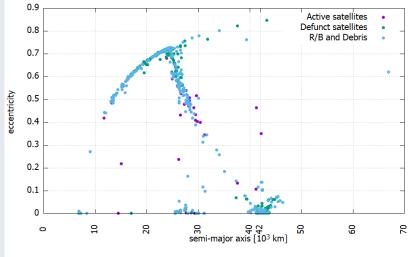
telescope moves to the West new set of 3 images are acquired

Repeat

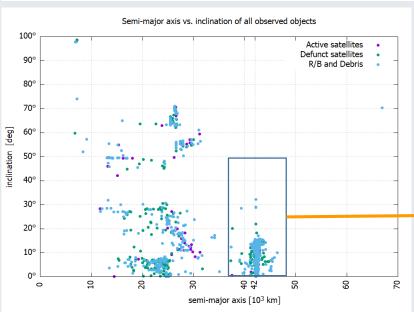

Sky from Bucharest on 21 March 2022, 21:00 UTC

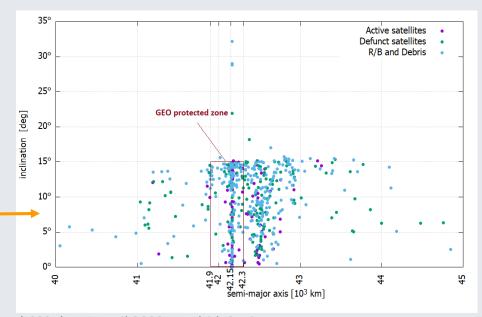


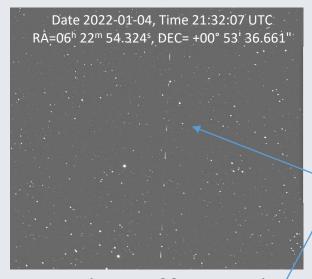
Results (2020-2021)

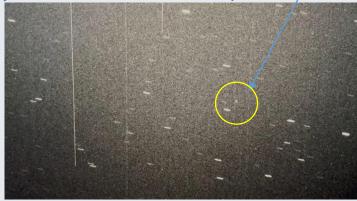

- ✓ 32 535 tracks for 1 230 unique objects
- ✓ 1/3 of total no. of objects from GEO Protected Zone and Graveyard orbits respectively.
- ✓ smallest objects observed have RCS = 30 cm² at furthest distance of 45 000 km

RCS = Radar Cross Section

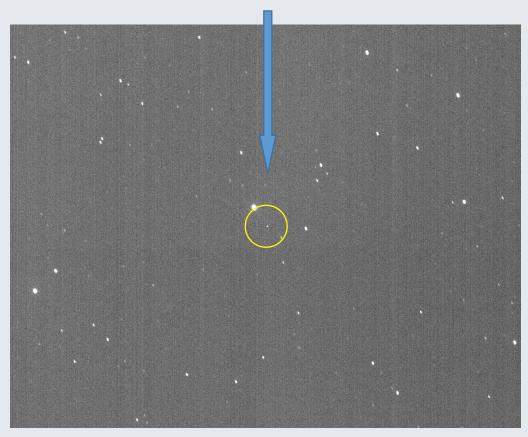




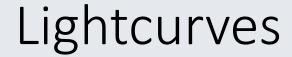

- ✓ 2 representative groups in MEO & GEO
 - Navigation Satellites: Galileo (calibration campaigns), Glonass, GPS
 - Upper stages in GTO (Geostationary Transfer Orbits)
 - Defunct satellites in graveyard orbits

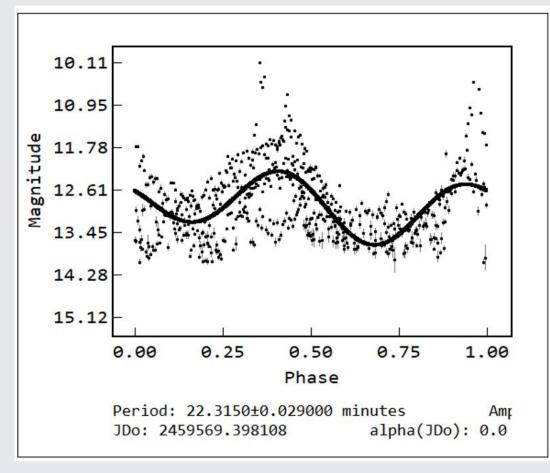

Additional science

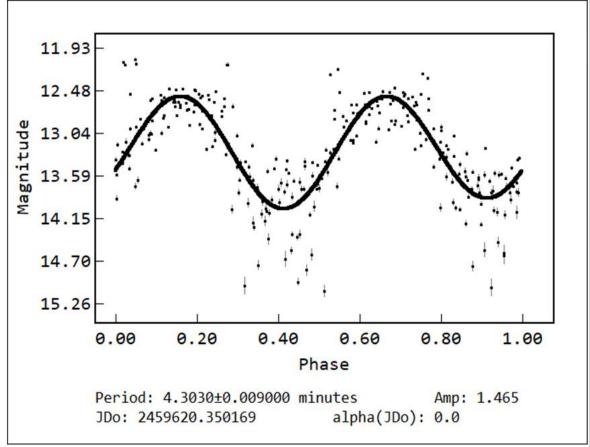
Asteroids observations


Satellites with brightness variations

Routine EU SST operations




Different strategy


- NEEMO-T03 telescope in tracking mode
- 1 sec exposure time
- $1 \rightarrow 2$ h continuous observations

Satellite 1981-073A Date 2022-02-15

Phased plots for two defunct satellites, 1981-073A (left) and 1984-063A (right).

Conclusions

- Current strategy to survey GEO satellites with NEEMO-T03 telescope
- Analysed data from 2 years of operations in EU SST
- Evaluate the telescope performance assessing
 - survey completeness of objects orbiting in the GEO protected region and graveyard orbits at $\approx 1/3$ of the total population due to visibility constraints (inner city observatory
 - minimum RCS = 30 cm² at 45 000 km
 - detected a significant population of objects with HEO
- Additional science
 - satellites with brightness variations
 - telescope in tracking mode
 - obtain their lightcurves
 - determined their rotational period
 - one object is a tumbler
 - second completes a rotation in ≈ 4 minutes
 - further systematic study to be made during my PhD thesis

THANK YOU FOR YOUR ATTENTION!

Madalina Trelia

Romanian Space Agency/University of Bucharest

madalina.trelia@rosa.ro