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ABSTRACT 

 
The “Decision of the European Parliament and the Council Establishing a Space 
Surveillance and Tracking Support Framework” was adopted on April 16, 2014. It 
established the European Space Surveillance and Tracking (EU SST) Support 
Framework at European level, which evolved into a fully-fledged component of the 
European Union Space Programme adopted on 28 April 2021. EU SST contributes to 
the global burden sharing of ensuring the sustainable and guaranteed access to and 
use of space for all. Its primary objective is the provision of space-safety services, 
namely, to protect spacecraft from the risk of collision, to monitor uncontrolled re-
entries, and to survey the in-orbit fragmentation of space objects.  
 
CDTI, as part of the EUSST Consortium, is developing a Coordinated Planner 
(COPLA) for EU SST network of sensors. In this abstract, the description of the logic 
and algorithms developed in the COPLA project is presented. The objective of COPLA 
is to coordinate all the EU SST sensors in order to contribute and improve the SST 
services. 
  
COPLA software is mainly divided in two processing chains, survey and tracking, that 
complements each other in order to optimize the coordination of the sensors. First of 
all, the survey chain is in charge of generating a survey strategy for optical sensors. 
With this survey strategy for optical sensors and the pointing for radars, visibilities 
against all the catalogued objects are obtained. These visibilities will be used by the 
accuracy gain algorithm in charge of computing the covariance improvement produced 
by the survey measurements. 
 
With the computation of this accuracy gain, the tracking chain starts by selecting 
objects ordered by a given priority. This priority is obtained considering the space 
safety constraints at that moment, the covariance of the object (after being reduced 
with the survey chain), and other parameters. Then, observation opportunity slots are 
computed based on hard constraints and soft constraints, without a strict threshold, 
evaluated by machine learning algorithms. Besides, a sensor performance weighting 
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value will be obtained based on machine learning approach, based in the historical 
success of the sensor-object tuple. Then, the accuracy gain is also computed for these 
tracking slots with the same approach as the survey chain. 
 
Finally, priority of the object, observation probability, sensor performance weight and 
accuracy gain together with sensor movement constraint are finally introduced in the 
cost function of the optimizer in order to select the optimal tracking slots that the 
complete sensor network must follow. 

1 INTRODUCTION 

The EU SST framework is in continue growth with new satellite owner operators, new 
services and new member states with their own network of sensors. 
 
As SST network relies, in a first approach, on its SST network of sensors in order to 
produce all the SST products downstream, it is of extreme importance to coordinate 
the operations of all these new sensors in combination with the existing ones. For this 
reason, a Coordinated Planner tool is required. 
 
The main goal of COPLA is the coordination of the EU SST network of sensors by the 
software evaluation and optimization of its operations in a routine basis. COPLA is in 
charge of gathering all the required information and generating the final products 
needed by the sensor operators. 
 
In the following sections, a detailed explanation on the algorithms in charge of 
performing the evaluation and the optimization of the survey and tracking plans are 
described. These sections must be understood as a sequence of processes to achieve 
the optimized schedule of the sensor network.  

2 SURVEY CHAIN 

Survey chain is the starting point of the COPLA software once the different inputs from 
the EUSST DB and external servers such as orbits, sensor availability, Earth 
orientation parameters, solar and geophysical activity, object properties, etc… have 
been retrieved. 

2.1 Survey strategy 

In contrast with the radars, which has a fixed pointing and very large apertures, optical 
sensors have a limited Field of View (FoV) size and requires special observability 
constraints, such as target sun illumination or angular distance to blinding bodies. For 
this reason, telescopes need to make use of survey strategies on their survey 
operations. A survey strategy is a dedicated guiding law detailing the coordinates (in 
terms of right ascension and declination) where the telescope should point at each 
instant of time.  



 
Figure 1: Survey strategy definition 

COPLA software implements an optimization algorithm for selecting the most suitable 
strategy for each sensor based on the GEO “leak-proof” concept. That is, for a vertical 
stripe of desired width (in declination), the telescope time to sweep this stripe will be 
always shorter or equal to the time the objects require to cross the FoV assuming the 
typical mean motion of a GEO object 𝑛𝐺𝐸𝑂 = 0.25 𝑑𝑒𝑔/𝑚𝑖𝑛. 
 
For the optimization problem, a set of parameters derived from the sensor 
characteristics and the survey requirements defined need to be configured. These 
parameters are: 
 

• 𝑡𝑒𝑥𝑝: exposure time of the telescope 

• 𝑡𝑟𝑒𝑝: repositioning time of the telescope 

• 𝑁𝑖: number of images the telescopes takes in each survey field 

• 𝑁𝑓: number of survey fields in each stripe 

• 𝑁𝑏: number of vertical barriers in each survey period 

• 𝛾𝑟: requested overlap between two stripes 
 
The problem is then split in two smaller ones, first one related to the target declinations 
and second to the target right ascensions. For the declination, it has to be taken into 
account that the majority of the GEO objects are concentrated around 𝛿 = 0°, in the 
so-called GEO ring, and in a non-uniform distribution around it (see Figure 2) for the 
non-controlled objects caused by third-body perturbations. Considering these two 
constraints together with the FoV and 𝑁𝑓, which define the declination bandwith, the 

algorithm will easily select the most suitable declination to place the stripe for each 
right ascension. 
 



 
Figure 2: Density of GEO population in Right Ascension-Declination map 

For the target right ascension, both the “sky constraints” and the brightness of the 
objects are considered. Sky constraints are known as restrictions that should be 
applied to the survey strategy because of saturation or poor illumination conditions or 
both for the telescope and the observed object. The constraints considered in this 
algorithm are: night period of the telescope (𝑆𝑍𝐷𝑚𝑖𝑛 ), minimum elevation (𝑒𝑙𝑚𝑖𝑛 ), 
maximum distance to North Galactic Pole (𝐺𝐷𝑃𝑚𝑎𝑥), minimum distance to the Moon 
(𝑀𝐷𝑚𝑖𝑛) and Sun illumination restriction (umbra and penumbra). Brightness of the 
objects is evaluated by considering the pointing phase angle, θ (angle between Sun-
Pointing Sensor-Pointing) since the properties of each object are not known at this 
point. After all this, the optimization problem is defined in the following way: 
 

maximize
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elj > elmin
SZDj > SZDmin
GDPj < GDPmax

MDj > MDmin,NM if (α, δ) ∈ New Moon

MDj > MDmin,FM if (α, δ) ∈ Full Moon

βj > VASun,j + VAEarth,j

 

 

(1) 

 

Where: 

• NB is the number of vertical barriers and N is the total number of epochs 

under analysis 

• ∆ti,j is the survey field time for the ith barrier at jth epoch 

• βj is the angular difference between observations taken from the centers of 

the Sun and the Earth and VABody,j is the view angle (half of the angular 

extent of the object w.r.t. certain body, also known as semi-diameter) jth epoch 



The physical meaning of this objective function can be understood as brightness 

balanced effective survey time. Notice that the leak-proof concept is also introduced 

in this optimization process by introducing the constraint of ∆ti = 0 seconds when a 

survey field is repeated in the same stripe, as a result of one of the restrictions is not 

passed. 

Additionally, in the previous function it has been introduced the concept of number of 

vertical barriers. The physical meaning of this parameter is basically to define the 

number of re-observations of the observed objects. In other words, for one fixed barrier 

in right ascension, the sensor will sweep from East to West in local coordinates, the 

maximum number of observed objects will be obtained, roughly corresponding to one 

third of the GEO ring. On the other hand, for two fixed right ascension barriers (two 

sweeps), a lower number of objects will be observed with the advantage of seen these 

objects twice. For this last case, the cost function is subject to one additional 

restriction:  

αshift,i = tbarrier,inGEO (2) 

Where: 

• αshift,i is the right ascension shift between ith and (i-1)th barriers 

•  tbarrier,i is the time spent in the fixed right ascension ith barrier 

As mentioned before, this parameter is configurable depending on the selected goal, 

either to increase number of objects (wider area covered) or to improve the accuracy 

of part of the objects (at least 2 re-observations). 

Finally, contrary to the leak-proof concept, they could exist cases (i.e. telescope with 

a very wide FoV) where the whole stripe can be swept in a shorter period of time than 

the objects use to cross the FoV. For those cases, the cost function is also subject to 

an additional constraint in order to try to reduce the number of observed regions of the 

sky: 

𝛼𝑐𝑜𝑟𝑟 = tstripenGEO − 𝐹𝑜𝑉 + 𝛾𝑟 (3) 

Where: 

• αcorr is the correction in right ascension between stripes 

•  tstripe is the time spent in the stripe (tstripe = texpNi + trep) 

A more detailed explanation of this approximation and the obtained results can be 
found in [1]. 

2.2  Survey visibilities 

Once the telescope pointing ephemerides have been defined based on the survey 
strategy and fields of regard of the radars have been configured, all the survey 
visibilities can be computed using the complete catalogue of objects. 
 
For telescope observability, constraints described in (1) are considered in addition with 
two more detectability constraints: 
 



𝜔obj < ωmax 
(4) 

Where: 

• 𝜔obj is the angular velocity of the observed object 

•  𝜔max is the maximum angular velocity a sensor can follow 

and 

𝑚 = 𝑚0 − 2.5 log10(

2
3𝜋2

𝐹𝑆
𝜋𝑑𝑠

2

4𝑅2
𝑎(sin 𝜃 + (𝜋 − 𝜃) cos 𝜃)

𝐹0
) < 𝑚𝑙𝑖𝑚 

(5) 

Where, 

• 𝑚 and 𝑚0 are the apparent magnitude of the object and of the reference object, 

respectively (for Sun 𝑚0 = −26.74 𝑚𝑎𝑔 ). 

• 𝐹𝑆 and 𝐹0 are the irradiance flux of the Sun and the reference object (Sun), 

respectively. 

• 𝑑𝑠  is the diameter of the object, assumed a Lambertian sphere for simplicity. 

• 𝑅 is the range between the telescope and object. 

• 𝑎 is the geometric albedo of the object (assumed to be 0.1 for all objects). 

• 𝑚𝑙𝑖𝑚is the limiting magnitude of the telescope 

For radar observability the only condition that applies is the minimum elevation 
whereas for the detectability angular restriction applies, (4), together with the so call 
“radar equation”, defined as follows: 
 

𝑅𝐶𝑆obj > RCSmin =
𝑅𝐶𝑆𝑟𝑒𝑓𝜌𝑜𝑏𝑗

4

𝜌𝑟𝑒𝑓
4  

(6) 

Where: 

• 𝑅𝐶𝑆obj and 𝜌obj are the Radar Cross Section (assumed the area) and range of 

the observed object 

• 𝑅𝐶𝑆ref and 𝜌ref are the Radar Cross Section (assumed the area) and range of 
reference 

 
After applying these constraints, a visibility for a sensor-object pair is obtained when 
the object is inside the FoV, so that: 

𝐶𝑜𝑛𝑖𝑐𝑎𝑙 𝐹𝑜𝑉: 𝑥̅𝑝𝑜𝑖𝑛𝑡 · 𝑥̅𝑜𝑏𝑗𝑒𝑐𝑡 ≤ 
𝐹𝑜𝑉

2
 

 

𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑎𝑙 𝐹𝑜𝑉: 

{
 
 

 
 
𝑎 = 𝑥̅𝑜𝑏𝑗𝑒𝑐𝑡 · (𝑥̅𝑝𝑜𝑖𝑛𝑡+𝑥,+𝑦 × 𝑥̅𝑝𝑜𝑖𝑛𝑡+𝑥,−𝑦)

𝑏 = 𝑥̅𝑜𝑏𝑗𝑒𝑐𝑡 · (𝑥̅𝑝𝑜𝑖𝑛𝑡+𝑥,−𝑦 × 𝑥̅𝑝𝑜𝑖𝑛𝑡−𝑥,−𝑦)

𝑐 = 𝑥̅𝑜𝑏𝑗𝑒𝑐𝑡 · (𝑥̅𝑝𝑜𝑖𝑛𝑡−𝑥,−𝑦 × 𝑥̅𝑝𝑜𝑖𝑛𝑡−𝑥,+𝑦)

𝑑 = 𝑥̅𝑜𝑏𝑗𝑒𝑐𝑡 · (𝑥̅𝑝𝑜𝑖𝑛𝑡−𝑥,+𝑦 × 𝑥̅𝑝𝑜𝑖𝑛𝑡+𝑥,+𝑦)

 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 {
𝑎, 𝑏, 𝑐, 𝑑 ≥ 0
𝑎, 𝑏, 𝑐, 𝑑 ≤ 0

   

(7) 



2.3 Survey accuracy gain 

The main objective of the survey chain is to compute the covariance improvement of 
each of the objects observed by survey sensors in order to use it as a feedback for the 
tracking chain. 
 
The object’s initial covariance (𝑃0 ) is retrieved from the state of the object. This 
covariance can be propagated to any time using the transition matrix as: 
 

𝑃𝑖 = Φ𝑡𝑖,𝑡0
𝑃0Φ𝑡𝑖,𝑡0

𝑇  (8) 

 
Where, 𝑃𝑖 = 𝑃(𝑡𝑖) represents the statistical covariance at time 𝑡𝑖 and Φ𝑡𝑖,𝑡0

= Φ(𝑡𝑖, 𝑡0) 

the transition matrix between states 𝑡0 and 𝑡𝑖. Physically it represents the evolution of 
errors in time, that is, how an error in a certain component in the reference state is 
transformed into an error in the same or any other component at the start epoch of the 
analysis.  
With the visibility periods obtained during the survey, a block of measures can be 
simulated and its effect on the covariance evaluated as follows: 
 

𝑃̂𝑖
−1 = 𝑃𝑖

−1 + 𝐺𝑖
𝑇𝑊𝐺𝑖 𝑤ℎ𝑒𝑟𝑒 𝐺𝑖 =

𝜕𝑧𝑖̅
𝜕𝑥𝑖̅

 
(9) 

 

Where 𝑃̂𝑖 represents the covariance updated by the measurements at time 𝑡𝑖, 𝑃𝑖 the 
covariance propagated at the time of the measurements, 𝐺𝑖  the matrix of partial 
derivatives of the measurements (𝑧𝑖̅) with respect to the state vector (𝑥𝑖̅) (physically it 
translates the error in the measurement into position and velocity errors of the object) 

and 𝑊 = 𝑑𝑖𝑎𝑔(𝜎𝛽
−2, 𝜎𝜀

−2, … , 𝜎𝜌̇
−2) represents the weight of the different components of 

the measure. This weight is inversely associated with the expected error of each 
measurement component, weighing the components between them and therefore 
their effect on the state vector. 
. 
The effect of each block of measurements into the state vector of the object can also 
be propagated to any time applying the same transition matrix: 
 

𝐻𝑖 =
𝜕𝑧𝑖̅
𝜕𝑥̅𝑓

=
𝜕𝑧𝑖̅
𝜕𝑥𝑖̅

𝜕𝑥𝑖̅
𝜕𝑥̅𝑓

= 𝐺𝑖Φ𝑡𝑖,𝑡𝑓
 (10) 

 
And therefore, the effect of the block of measurements in the covariance at the end of 
the computation period is: 
 

𝑃̂𝑓
−1 = 𝑃𝑓

−1 +Φ𝑡𝑖,𝑡𝑓
𝑇 𝐺𝑖

𝑇𝑊𝐺𝑖Φ𝑡𝑖,𝑡𝑓
= 𝑃𝑓

−1 + 𝐻𝑖
𝑇𝑊𝐻𝑖 

(11) 

 
Where Φ𝑡𝑖,𝑡𝑓

= Φ(𝑡𝑖, 𝑡𝑓) is the transition matrix that leads from the point where the 

covariance is to be evaluated to the package of the considered measurements. Adding 
up all the packages of measurements and considering the propagation of the 
reference covariance, the equation would be as follows: 
 



𝑃̂𝑓
−1 = (Φ𝑡𝑓,𝑡0𝑃0Φ𝑡𝑓,𝑡0

𝑇 )
−1

+∑𝐻𝑖
𝑇𝑊𝐻𝑖

𝑛

𝑖=1

 
(12) 

 
Notice the nature of two terms in above equation. First represents the effect on the 
final covariance of the propagated initial covariance and the second one the effect of 
considering the survey observations into the covariance. 
 
The following figure is an example of the accuracy gain concept.   

 
Figure 3: Accuracy gain obtained with potential observations from a sensor 

In the upper part of the figure, the natural evolution of the uncertainty of the orbit tends 
to increase with time, making the covariance ellipsoid become greater with time. 
However, in the lower part of the figure, it is illustrated what happens if observations 
are included in the orbit determination process. The resulting covariance after the orbit 
determination for the same epoch as in the upper example is considerably reduced by 
the effect of the observations, increasing the accuracy.  
Applying this process, it is possible to estimate the effect of the survey strategies over 
the accuracy of the overall objects, and therefore, considering it also in the tracking 
chain to optimize the follow-up of the objects that do not reach the targeted accuracy. 
 
This formulation is based on the nomenclature of classic references such as [2] and 
[3]. 

3 TRACKING CHAIN 

Tracking chain is used by telescope, radar and lasers stations under tracking activity. 
This chain is mainly dedicated to objects under special requests from the SST 
services, high degraded accuracy in the catalogue, calibration campaigns and 
dedicated exercises. In order to extract optimal schedule of the sensor network, this 
chain should be executed after the survey considering the observations likely be 
provided by the survey sensors and their effect on the objects. 

3.1 Object characterization 

The starting point of the tracking chain is the object characterization whose main 
functions are the classification of the objects in different groups, known as “population 
groups” and the establishment of the priorities for the full object’s catalogue that will 
be used later for the optimizer. 



 
Population groups are defined by the user according to object properties such as, 
status of the object (debris, active and unknown), orbital regime (LEO, MEO, GEO and 
GTO), event source (collision avoidance, re-entry, fragmentation, calibration and 
others). Groups have also an associated priority multiplier that has been configured 
according to COPLA internal priorities. Final priority of each object is computed in the 
following way: 
 

𝐹 =  f1f2f3 = f1
1

2
(
𝐶

𝑊𝑐𝐶
+

𝑡𝑙𝑎𝑠𝑡 𝑜𝑏𝑠
𝑊𝑙𝑎𝑠𝑡 𝑜𝑏𝑠𝑡𝑙𝑎𝑠𝑡 𝑜𝑏𝑠

)
1

2
(
𝐴

𝑊𝐴𝐴
) (13) 

Where: 

• f1 is the priority multiplier for each population group 

• f2  is the accuracy factor, composed of C (main diagonal of the updated 
covariance of the object, (12)), W𝑐 (weight for covariance), 𝑡𝑙𝑎𝑠𝑡 𝑜𝑏𝑠 (time to last 
observation, acquired from the last measurement obtained of the given object) 
and W𝑙𝑎𝑠𝑡 𝑜𝑏𝑠 (weight for last observation) 

• f3is the size factor, composed of A (area of the object) and W𝐴(weight of the 
area) 

 
Notice that this priority allows the COPLA operator to fine-tune three different weights 
in order to give more weight to one of the mentioned factors. Notice also the feedback 
of the survey chain in the priority computation. 
 
Additionally, there exists another source of priority, the EUSST Tasking Request for 
SST services. When a tasking request exists in COPLA, the above priority is computed 
in the following way: 

𝐹 =  f1𝑓𝑇𝑅 
(14) 

Therefore, according to this equation, the priority of the object only depends on its 
internal multiplier and the priority assigned to the EUSST Tasking Request, stablished 
at Consortium level. 

3.2 Tracking opportunities 

Tracking opportunities are computed in a similar approach as it was explained in 
Section 2.2. The only difference is that for the case of opportunities the condition of 
having the object inside the FoV is changed by the Field of Regard (FoR). FoR can be 
defined as the total area a sensor can cover by changing its pointing. This condition is 
implicitly met with the observability constraints. 
 
COPLA software will also allow a constraint relaxation in this first phase, so that its 
main objective is just to obtain a set of pre-filtered opportunities with the most 
restrictive or physical conditions. In a second phase, a probabilistic approach will be 
applied on those opportunities. The probabilistic approach allows considering the 
uncertainty in external or environmental factors, and relationships between the 
different constraints, simply giving a value of the joint observation probability of a given 
object for each moment. For this approach, machine learning algorithms will be used 
since they can implement simple neural networks that are capable of representing the 
effect on the probability of detection as a function of the observation parameters, 
elevation, separation and phase of the moon, brightness, etc ... Although these models 
can be trained by simulated data considering the current restrictions, this 



implementation would also allow re-training based on the history of observation plans 
and the measurements made (Figure 4-Right), helping to consider the initial lack of 
definition of said restrictions or to consider cross effects. In case the history is not 
available, data can be simulated using the same cut-off functions used in the 
deterministic approach and allow machine learning to smooth these cuts (Figure 4-
Left). 
 

 
Figure 4: Statistical calculation of visibility and retraining opportunity 

As indicated before, machine learning would allow the algorithms to train unmodelled 
relationships between observation conditions. These relationships could be very 
complex to be quantified even by the sensor operator, but it is expected the ML 
algorithm to extract the information need based on the historical data. An example of 
these relationships could be the observation probability of an object depending on the 
separation with respect to the moon, where the brightness of the object, the phase of 
the moon and even the elevation of the object could simultaneously affect the 
constraint. 
 

 
Figure 5: Combined elevation and object size constraint 

Summarizing, the combination of the relaxed constraints and the probabilistic 
approach would allow obtaining a reduced set of slots with an associated “observation 
probability” that will be later used by the optimizer as part of the cost function. 

3.3 Sensor performances weighting 

An additional contribution to the schedule optimisation is given by the sensor 
performance indicator. A model based on the history of previous plans and the 
characteristics of the sensor, and the objects are used to estimate the success 
probability that a given slot will be actually observed by the sensor. This success 
probability is used by the planning algorithm as an additional contribution to the cost 
function of each slot. Two kinds of models are available for computing the sensor 
weight: one is a simple statistics-based model, based on the success rate of previously 
planned slots to that sensor in the past. 
 



The second model is a Machine Learning algorithm, which uses more information 
about the object (such as elevation, azimuth, time of the slot, angular distance to the 
moon in the sky, etc.) to provide a better ad-hoc estimation for the slot. This model is 
trained from previous planned slots, and it is only available when a significant number 
of samples are available. In summary, it takes into consideration information about the 
slot, the target object properties, trajectory and observation conditions. 
 
This machine learning model uses a Random Forest algorithm, which uses a set of 
decision trees, each one built from a sample drawn with replacement, and at each 
node the best split is found using information of a subset of features or samples. Then 
the prediction of all trees is averaged for the result. Thus, this algorithm is part of the 
ensemble learning family. Random Forest was selected as the best-performant 
algorithm of several tested, including neural networks, other decision-tree-based 
algorithms and different regression models, from the results of [4]. 
 
The model was tuned and trained using a large dataset of historical plans, tracks and 
reported summary of the nights from the S3TOC database, with additional data 
augmentation to include orbital information (missing in the source data). The dataset 
contains 1200 observation requests with more than 150.000 observation slots (target 
object, time slot, sensor, sensor location) for a time period between May 2017 and 
June 2020. 

 
Figure 6: Distribution of observation requests per sensor 

Special care was used to maximize the prediction accuracy of the model without 
overfitting by tuning the model’s hyper-parameters, so the model from past 
observations can be generalized to future predictions, although the sensor weighing 
software can re-train the model at any time. 
 
Three hyper-parameters are tuned to reduce the overfitting: the number of estimators, 
the maximum depth of the decision trees and the percentage of the total number of 
samples to consider for node splitting.  
 
The final model Confusion matrix is shown in Figure 7, which shows that for successful 
requests, the precision is around 84% (true positives rate) whereas for unsuccessful 
requests is about 68% (true negatives rate). 



 
Figure 7: Confusion matrix for the final Random Forest Model on the test set in [4] 

The false positive rate is about 32%, which could be decreased to make the model 
more accurate and effective. However, it is better to overestimate the probability of 
success than underestimate and lose opportunities to observe objects. 

3.4 Tracking accuracy gain 

Last performance indicator for slot selection is the accuracy gain. The algorithms used 
for tracking accuracy gain are the same than the ones explained in 2.3., with the only 
difference that in this case the initial covariance to which they are added the slot 

improvement will be the updated one after the survey campaign, i.e. 𝑃̂𝑓
−1 defined in 

(12). 

3.5 Tracking plan optimization 

A solver is a mechanism to implement constraint programing to achieve the best 
solution of a problem. In constraint programing, optimization is done by computing 
improving solutions, until reaching an optimum. 
  
The problem of selecting the appropriate objects to be observed by the sensor can be 
treated as a constraint’s satisfaction problem. Taking into account the provided input, 
the opportunities divided into slots, the solver should select the object to observe for 
the pair sensor and slot according to the opportunity conditions. 
  
In that way, it is possible to constraint for a minimum number of slots per sensor and 
assure the sensor will observe the same object during the stablished minimum period, 
for example, if the sensor needs a minimum of 6 minutes to observe one object and 
the default slot is 1 minute, the solver should assure there will be 6 consecutive slots 
of the interval with the same object assigned to the sensor. This constraint is defined 
as hard constraint, i.e., the solver has to meet it to provide a feasible solution. On the 
other hand, the soft constraints can be defined to optimize the feasible solution. 
  
The soft constraints will try to balance between the quality of the observations and the 
movements of the sensors to observe the objects. It can be defined as the cost function 
with the following formula: 
 



∑
1

𝐹𝑜𝑏𝑗
·

𝑜𝑏𝑗

𝑗=0

𝑃̂𝑓𝑇 · 𝑤1 + ∑ ∑ 𝛼𝑚 ·

𝑚𝑜𝑣

𝑚=0

𝑤𝑠

𝑠𝑒𝑛𝑠

𝑠=1

 
(15) 

𝑃̂𝑓𝑇
−1 = 𝑃̂𝑓𝑆

−1 + ∑ 𝐻𝑖
𝑇𝑊𝐻𝑖 · 𝐹𝑜𝑏𝑠(1 − 𝐹𝑐𝑐) ·

𝑜𝑏𝑠 𝑇

𝑖=0

𝐹𝑠𝑤  
(16) 

 
Where: 

• 𝐹𝑜𝑏𝑗 represents the priority of the object, the objects with the highest priority weigh 

have preference to be observed. 

• 𝑃̂𝑓𝑇  represents the final orbital accuracy gain with respect to the updated 

covariance from survey operations (𝑃̂𝑓𝑆) considering all the observations of the 

selected slots of the same object for tracking ∑ 𝐻𝑖
𝑇𝑊𝐻𝑖 · 𝐹𝑜𝑏𝑠(1 − 𝐹𝑐𝑐) ·

𝑜𝑏𝑠 𝑇
𝑖=0 𝐹𝑠𝑤. 

• 𝐹𝑜𝑏𝑠 represents the probability of success of the slot according to the probability 
estimated by the opportunity calculation. 

• 𝐹𝑐𝑐 represents the forecasted probability of cloud cover. 

• 𝐹𝑠𝑤 represents the figure of merit calculated based on the historical performance 
of the sensor, i.e. sensor weight. 

• 𝛼𝑚 represents the angle of by the sensor for the movement from slot 𝑚 to slot 𝑚 +
1. 

• 𝑤1 and 𝑤𝑠  correspond to configurable weights by the COPLA operator that will 
allow adjusting the relative weight of the observation quality and the movement of 
the sensors. 

The objective can be summarized as the minimization of the uncertainty of the overall 
catalogue, minimizing the average covariance weighted with each object priority and, 
at the same time, the minimization of the total movement of each sensor that spends 
observation time and increases the wear of the frames. It is noted that both 
contributions can be tuned through a good selection of the relative weights (𝑤1 and 
𝑤𝑠). 
 
The solver tries to find the optimal solution exploring the search space, presented as 
a tree where each node is a solution. The movement from one solution to another has 
been modelled as the change in the value of the observed object for the pair 
slot/sensor. Per movement, the score function is evaluated and depending on the 
selected search strategy the next branch of the tree is explored up to a certain 
termination criteria, such as, for example, the limit number of nodes to be explored 
has been reached, the cost function has reached the desired value, the solution found 
is the best after k iterations, the execution time limit has been achieved, etc. In this 
case, the termination criteria is defined as a limit in the execution time. In the 
performed simulations, the execution time limit is set to 15 minutes. 
 
In the solver optimization process, the following phases can be configured: 

• The Construction Heuristic (CH) initializes the values of the planning variables 
according to the score (hard/soft constraints) and the selected strategy. 

• The Local Search (LS) works from an initialized solution that evolves during 
the search according to the score and the chosen search algorithm. 

 



In order to easily define the problem, the constraints and the search strategy, the 
solver OptaPlanner (http://www.optaplanner.org) is used.  This engine combines 
optimization heuristics and metaheuristics with a very efficient score calculation. The 
metaheuristics algorithms are a kind of stochastic optimization algorithms, which uses 
some degree of randomness to find the best solution for NP-hard problems and it is 
proven they have better performance than other techniques. To implement the score 
calculation the problem constraints are defined as business rules and assigning a 
score to each one, making it easy to implement and scale. 
  
The search strategy and the termination criteria can be easily configured in 
OptaPlanner and provides the possibility to benchmark several configurations in order 
to find the one that better fits with the specific problem data. An algorithm that checks 
every possible solution (even with pruning, such as in Branch and Bound) can easily 
run for billions of years on a single real-life planning problem. The aim is to find the 
best solution in the available timeframe. Planning competitions (such as the 
International Timetabling Competition) show that Local Search variations (Tabu 
Search, Simulated Annealing, Late Acceptance…) usually perform best for real-world 
problems given real-world time limitations. 
 
For this specific problem, using a dataset with 4 sensors, 30 objects and an interval of 
1 day, with opportunities calculated for each 5 minutes, several simulations are run. 
The selected CH is First Fit strategy and for the LS several configurations are 
evaluated. 
  
In the first simulation, the configuration of Tabu Search strategy has been evaluated. 
The parameters to configure in this algorithm are the Tabu size and the accepted count 
limit (according to OptaPlanner documentation this value should be high). Testing 
reveals that the best values for the Tabu Search configuration are 0.2% for the ratio 
and 10000 for the accepted count limit, as it can be seen in the following table: 
 

Table 1: Tabu Search simulation results 

LS Configuration  Final Score  Raking 

TS_Standard  [0]hard/[-286440/12124]soft  4 
TS_size7_limit100  [0]hard/[-618172/11856]soft  5 
TS_size7_limit1000  [0]hard/[-276448/12187]soft  2 
TS_size7_limit10000  [0]hard/[-262866/12369]soft  1 
TS_ratio2_limit100  [0]hard/[-648373/12057]soft  6 
TS_ratio2_limit1000  [0]hard/[-285689/12159]soft  3 
TS_ratio2_limit10000  [0]hard/[-261653/12362]soft  0 

 
The score is defined with, in the hard level the constraint of the minimum number of 
slots per sensor to observe an object and in the soft level, first value is the movement 
of the sensor and the second value is the uncertainty of the objects. 
 
Similar simulations have been performed for the Simulated Annealing algorithm. In 
that case, the configured parameters are the accepted count limit and the starting 
temperature. The best results are with the configuration of starting temperature of 
[2000]hard/[1000/100]soft and accepted count limit of 4 (see Table 2). 
 

Table 2: Simulated Annealing simulation results 

LS Configuration  Final Score  Ranking 

http://www.optaplanner.org/


SA_2000hard_20000_100soft_a4  [0]hard/[-206706/369]soft  2 
SA_2000hard_100000_100soft_a4  [0]hard/[-206706/369]soft  2 
SA_2000hard_100000_10soft_a4  [0]hard/[-206706/369]soft  2 
SA_1000hard_10000_100soft_a4  [0]hard/[-206444/360]soft  1 
SA_1000hard_10000_10soft_a4  [0]hard/[-206706/369]soft  2 
SA_2000hard_1000_100soft_a4  [0]hard/[-190128/364]soft  0 

 
A third benchmark simulation is executed with several LS algorithms and the Tabu 
Search is the best for the soft score level 0, while Simulated Annealing is the best for 
the soft score level 1, as shown in the following plots. The first plot is how the score of 
sensor movements evolve during time and the second plot is with the score of the 
uncertainty of the objects. 
 

 
Figure 8: Benchmark simulation for sensor movement in OptaPlanner 

 



 
Figure 9: Benchmark simulation for object uncertainty in OptaPlanner 

4 CONCLUSIONS 

This paper has explained, in a detailed way, all the implemented algorithms for 
COPLA, whose main goal is the cooperation among all the EUSST sensors for 
providing accurate SST services. 
 
Firstly, for the survey chain, a parametrization on the free parameters of the survey 
strategy for telescopes is performed. This would allow to obtain optimal results in terms 
of survey time and track success (strictly related to the brightness of the objects). The 
other key point of this chain, is the covariance feedback obtained that will be inserted 
in the tracking chain, thus avoiding excess or defect of tracking slots assigned by the 
combination of both chains. 
 
Secondly, for the tracking chain, a prior selection and classification of the objects is 
done in order to narrow down the problem by extracting all the information regarding 
SST services and the survey chain for the objects. Artificial intelligence is also used 
for the better evaluation of the sensor-object opportunities, i.e., cross components, 
smooth behaviours and historic results for sensors or objects. Finally, the optimization 
solver returns the optimal tracking observations, known as plan slots, considering the 
accuracy gain, the object priority, the observation probability and the sensor 
performance weight together with sensor movement penalization in the specified 
execution time. 
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